Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Carbon Optically Transparent Electrodes for Electrogenerated Chemiluminescence

Identifieur interne : 001F72 ( Main/Repository ); précédent : 001F71; suivant : 001F73

Carbon Optically Transparent Electrodes for Electrogenerated Chemiluminescence

Auteurs : RBID : Pascal:12-0104019

Descripteurs français

English descriptors

Abstract

This study investigates pyrolyzed photoresist film (PPF)-based carbon optically transparent electrodes (C-OTEs) for use in electrogenerated chemiluminescence (ECL) studies. Oxidative-reductive ECL is obtained with a well-characterized ECL system, C8S3 J-aggregates with 2-(dibutylamino)ethanol (DBAE) as coreactant. Simultaneous cyclic vottammograms (CVs) and ECL transients are obtained for three thicknesses of PPFs and compared to nontransparent glassy carbon (GC) and the conventional transparent electrode indium tin oxide (ITO) in both front face and transmission electrode cell geometries. Despite positive potential shifts in oxidation and ECL peaks, attributed to the internal resistance of the PPFs that result from their nanoscale thickness, the PPFs display similar ECL activity to GC, including the low oxidation potential (LOP) observed for amine coreactants on hydrophobic electrodes. Reductive-oxidative ECL was obtained using the well-studied ECL luminophore Ru(bpy)32+, where the C-OTEs outperformed ITO because of electrochemical instability of ITO at very negative potentials. The C-OTEs are promising electrodes for ECL applications because they yield higher ECL than ITO in both oxidative-reductive and reductive-oxidative ECL modes, are more stable in alkaline solutions, display a wide potential window of stability, and have tunable transparency for more efficient detection of ECL.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0104019

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Carbon Optically Transparent Electrodes for Electrogenerated Chemiluminescence</title>
<author>
<name sortKey="Kate Walker, E" uniqKey="Kate Walker E">E. Kate Walker</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Chemistry and Biochemistry, Center for Electrochemistry, Center for Nano- and Molecular Science and Technolog The University of Texas at Austin</s1>
<s2>Austin, Texas 78712</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Austin, Texas 78712</wicri:noRegion>
<orgName type="university">Université du Texas à Austin</orgName>
<placeName>
<settlement type="city">Austin (Texas)</settlement>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Vanden Bout, David A" uniqKey="Vanden Bout D">David A. Vanden Bout</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Chemistry and Biochemistry, Center for Electrochemistry, Center for Nano- and Molecular Science and Technolog The University of Texas at Austin</s1>
<s2>Austin, Texas 78712</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Austin, Texas 78712</wicri:noRegion>
<orgName type="university">Université du Texas à Austin</orgName>
<placeName>
<settlement type="city">Austin (Texas)</settlement>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Stevenson, Keith J" uniqKey="Stevenson K">Keith J. Stevenson</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Chemistry and Biochemistry, Center for Electrochemistry, Center for Nano- and Molecular Science and Technolog The University of Texas at Austin</s1>
<s2>Austin, Texas 78712</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Austin, Texas 78712</wicri:noRegion>
<orgName type="university">Université du Texas à Austin</orgName>
<placeName>
<settlement type="city">Austin (Texas)</settlement>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0104019</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0104019 INIST</idno>
<idno type="RBID">Pascal:12-0104019</idno>
<idno type="wicri:Area/Main/Corpus">002145</idno>
<idno type="wicri:Area/Main/Repository">001F72</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0743-7463</idno>
<title level="j" type="abbreviated">Langmuir</title>
<title level="j" type="main">Langmuir</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aggregate</term>
<term>Amine</term>
<term>Carbon</term>
<term>Chemiluminescence</term>
<term>Electrochemistry</term>
<term>Electrodes</term>
<term>Ethanol</term>
<term>Film</term>
<term>Geometry</term>
<term>Hydrophobicity</term>
<term>Indium oxide</term>
<term>Instability</term>
<term>Oxidation</term>
<term>Potential</term>
<term>Resistance</term>
<term>Stability</term>
<term>Thickness</term>
<term>Tin oxide</term>
<term>Transients</term>
<term>Transparency</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Carbone</term>
<term>Electrode</term>
<term>Chimiluminescence</term>
<term>Film</term>
<term>Oxydation</term>
<term>Agrégat</term>
<term>Ethanol</term>
<term>Phénomène transitoire</term>
<term>Epaisseur</term>
<term>Oxyde d'indium</term>
<term>Oxyde d'étain</term>
<term>Géométrie</term>
<term>Potentiel</term>
<term>Résistance</term>
<term>Amine</term>
<term>Hydrophobicité</term>
<term>Electrochimie</term>
<term>Instabilité</term>
<term>Stabilité</term>
<term>Transparence</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Carbone</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This study investigates pyrolyzed photoresist film (PPF)-based carbon optically transparent electrodes (C-OTEs) for use in electrogenerated chemiluminescence (ECL) studies. Oxidative-reductive ECL is obtained with a well-characterized ECL system, C8S3 J-aggregates with 2-(dibutylamino)ethanol (DBAE) as coreactant. Simultaneous cyclic vottammograms (CVs) and ECL transients are obtained for three thicknesses of PPFs and compared to nontransparent glassy carbon (GC) and the conventional transparent electrode indium tin oxide (ITO) in both front face and transmission electrode cell geometries. Despite positive potential shifts in oxidation and ECL peaks, attributed to the internal resistance of the PPFs that result from their nanoscale thickness, the PPFs display similar ECL activity to GC, including the low oxidation potential (LOP) observed for amine coreactants on hydrophobic electrodes. Reductive-oxidative ECL was obtained using the well-studied ECL luminophore Ru(bpy)
<sub>3</sub>
<sup>2+</sup>
, where the C-OTEs outperformed ITO because of electrochemical instability of ITO at very negative potentials. The C-OTEs are promising electrodes for ECL applications because they yield higher ECL than ITO in both oxidative-reductive and reductive-oxidative ECL modes, are more stable in alkaline solutions, display a wide potential window of stability, and have tunable transparency for more efficient detection of ECL.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0743-7463</s0>
</fA01>
<fA02 i1="01">
<s0>LANGD5</s0>
</fA02>
<fA03 i2="1">
<s0>Langmuir</s0>
</fA03>
<fA05>
<s2>28</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Carbon Optically Transparent Electrodes for Electrogenerated Chemiluminescence</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>KATE WALKER (E.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>VANDEN BOUT (David A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>STEVENSON (Keith J.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Chemistry and Biochemistry, Center for Electrochemistry, Center for Nano- and Molecular Science and Technolog The University of Texas at Austin</s1>
<s2>Austin, Texas 78712</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>1604-1610</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>20642</s2>
<s5>354000506740690640</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>43 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0104019</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Langmuir</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>This study investigates pyrolyzed photoresist film (PPF)-based carbon optically transparent electrodes (C-OTEs) for use in electrogenerated chemiluminescence (ECL) studies. Oxidative-reductive ECL is obtained with a well-characterized ECL system, C8S3 J-aggregates with 2-(dibutylamino)ethanol (DBAE) as coreactant. Simultaneous cyclic vottammograms (CVs) and ECL transients are obtained for three thicknesses of PPFs and compared to nontransparent glassy carbon (GC) and the conventional transparent electrode indium tin oxide (ITO) in both front face and transmission electrode cell geometries. Despite positive potential shifts in oxidation and ECL peaks, attributed to the internal resistance of the PPFs that result from their nanoscale thickness, the PPFs display similar ECL activity to GC, including the low oxidation potential (LOP) observed for amine coreactants on hydrophobic electrodes. Reductive-oxidative ECL was obtained using the well-studied ECL luminophore Ru(bpy)
<sub>3</sub>
<sup>2+</sup>
, where the C-OTEs outperformed ITO because of electrochemical instability of ITO at very negative potentials. The C-OTEs are promising electrodes for ECL applications because they yield higher ECL than ITO in both oxidative-reductive and reductive-oxidative ECL modes, are more stable in alkaline solutions, display a wide potential window of stability, and have tunable transparency for more efficient detection of ECL.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001C01G</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001C01H</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Carbone</s0>
<s2>NC</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Carbon</s0>
<s2>NC</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Carbono</s0>
<s2>NC</s2>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Electrode</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Electrodes</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Electrodo</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Chimiluminescence</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Chemiluminescence</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Quimioluminiscencia</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Film</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Film</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Película</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Oxydation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Oxidation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Oxidación</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Agrégat</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Aggregate</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Agregado</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Ethanol</s0>
<s2>NK</s2>
<s2>FR</s2>
<s2>FX</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Ethanol</s0>
<s2>NK</s2>
<s2>FR</s2>
<s2>FX</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Etanol</s0>
<s2>NK</s2>
<s2>FR</s2>
<s2>FX</s2>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Phénomène transitoire</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Transients</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Fenómeno transitorio</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Epaisseur</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Thickness</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Espesor</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Oxyde d'étain</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Tin oxide</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Estaño óxido</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Géométrie</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Geometry</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Geometría</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Potentiel</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Potential</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Potencial</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Résistance</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Resistance</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Resistencia</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Amine</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Amine</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Amina</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Hydrophobicité</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Hydrophobicity</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Hidrofobicidad</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Electrochimie</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Electrochemistry</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Electroquímica</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Instabilité</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Instability</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Inestabilidad</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Stabilité</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Stability</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Estabilidad</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Transparence</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Transparency</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Transparencia</s0>
<s5>20</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Alcanol</s0>
<s5>21</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Alkanol</s0>
<s5>21</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Alcanol</s0>
<s5>21</s5>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Alcool</s0>
<s5>22</s5>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Alcohol</s0>
<s5>22</s5>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Alcohol</s0>
<s5>22</s5>
</fC07>
<fN21>
<s1>079</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F72 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001F72 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0104019
   |texte=   Carbon Optically Transparent Electrodes for Electrogenerated Chemiluminescence
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024